Odd shape in tensor while training & ResourceExhaustedError: OOM when allocating tensor

  keras, object-detection, python, tensorflow

I’m trying to run object detection using this github repo whicch leverages the simple 7-layer Single Shot MultiBox Detector.
I ran this on Google Colab using packages : keras==2.2.4 & tensorflow-gpu==1.13.1

and eventually I ran into this bug down below while training. Another thing that I want to complain about is the shape of the tensor that caused it to crash has a shape [2,1232,1640,48]
where…

  • 2 is the batch size
  • 1232 is half of the width (oddly enough)
  • 1640 is half of the height (oddly enough)
  • Not sure where 48 comes into the picture
Epoch 1/5

---------------------------------------------------------------------------

ResourceExhaustedError                    Traceback (most recent call last)

<ipython-input-28-3fbd9e60a593> in <module>()
     19 
     20                               max_queue_size=1,
---> 21                               workers=0)

7 frames

/usr/local/lib/python3.6/dist-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
     89                 warnings.warn('Update your `' + object_name + '` call to the ' +
     90                               'Keras 2 API: ' + signature, stacklevel=2)
---> 91             return func(*args, **kwargs)
     92         wrapper._original_function = func
     93         return wrapper

/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
   1416             use_multiprocessing=use_multiprocessing,
   1417             shuffle=shuffle,
-> 1418             initial_epoch=initial_epoch)
   1419 
   1420     @interfaces.legacy_generator_methods_support

/usr/local/lib/python3.6/dist-packages/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
    215                 outs = model.train_on_batch(x, y,
    216                                             sample_weight=sample_weight,
--> 217                                             class_weight=class_weight)
    218 
    219                 outs = to_list(outs)

/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in train_on_batch(self, x, y, sample_weight, class_weight)
   1215             ins = x + y + sample_weights
   1216         self._make_train_function()
-> 1217         outputs = self.train_function(ins)
   1218         return unpack_singleton(outputs)
   1219 

/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
   2713                 return self._legacy_call(inputs)
   2714 
-> 2715             return self._call(inputs)
   2716         else:
   2717             if py_any(is_tensor(x) for x in inputs):

/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py in _call(self, inputs)
   2673             fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
   2674         else:
-> 2675             fetched = self._callable_fn(*array_vals)
   2676         return fetched[:len(self.outputs)]
   2677 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
   1437           ret = tf_session.TF_SessionRunCallable(
   1438               self._session._session, self._handle, args, status,
-> 1439               run_metadata_ptr)
   1440         if run_metadata:
   1441           proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
    526             None, None,
    527             compat.as_text(c_api.TF_Message(self.status.status)),
--> 528             c_api.TF_GetCode(self.status.status))
    529     # Delete the underlying status object from memory otherwise it stays alive
    530     # as there is a reference to status from this from the traceback due to

ResourceExhaustedError: OOM when allocating tensor with shape[2,1232,1640,48] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
     [[{{node training/Adam/gradients/zeros_22-0-1-TransposeNCHWToNHWC-LayoutOptimizer}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[{{node loss/add_14}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

Please clarify what’s happening and how to get around this. I can also share more pertinent details about the model structure if that’s something that will aid in finding the bug.

Source: Python Questions

LEAVE A COMMENT